Gradient Estimates for a Weighted ?-nonlinear Parabolic Equation Coupled with a Super Perelman-Ricci Flow and Implications

نویسندگان

چکیده

Abstract This article studies a nonlinear parabolic equation on complete weighted manifold where the metric and potential evolve under super Perelman-Ricci flow. It derives elliptic gradient estimates of local global types for positive solutions exploits some their implications notably to general Liouville type theorem, Harnack inequalities classes Hamilton dimension-free estimates. Some examples special cases are discussed illustration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gradient estimates for a nonlinear parabolic equation under Ricci flow

Let (M,g(t)), 0 ≤ t ≤ T , be a n-dimensional complete noncompact manifold, n ≥ 2, with bounded curvatures and metric g(t) evolving by the Ricci flow ∂gij ∂t = −2Rij . We will extend the result of L. Ma and Y. Yang and prove a local gradient estimate for positive solutions of the nonlinear parabolic equation ∂u ∂t = ∆u − au log u − qu where a ∈ R is a constant and q is a smooth function on M × [...

متن کامل

Gradient Estimates for a Nonlinear Parabolic Equation on Riemannian Manifolds

Let (M, g) be a complete noncompact Riemannian manifold. In this paper, we derive a local gradient estimate for positive solutions to a simple nonlinear parabolic equation ∂u ∂t = ∆u+ au log u+ bu on M × [0,+∞), where a, b are two real constants. This equation is closely related to the gradient Ricci soliton. We extend the result of L. Ma (Journal of Functional Analysis 241 (2006) 374-382).

متن کامل

Perelman, Poincaré, and the Ricci Flow

In this expository article, we introduce the topological ideas and context central to the Poincaré Conjecture. Our account is intended for a general audience, providing intuitive definitions and spatial intuition whenever possible. We define surfaces and their natural generalizations, manifolds. We then discuss the classification of surfaces as it relates to the Poincaré and Thurston Geometriza...

متن کامل

Gradient Estimates for a Degenerate Parabolic Equation with Gradient Absorption and Applications

Qualitative properties of non-negative solutions to a quasilinear degenerate parabolic equation with an absorption term depending solely on the gradient are shown, providing information on the competition between the nonlinear diffusion and the nonlinear absorption. In particular, the limit as t → ∞ of the L1-norm of integrable solutions is identified, together with the rate of expansion of the...

متن کامل

Some Gradient Estimates for the Heat Equation on Domains and for an Equation by Perelman

In the first part, we derive a sharp gradient estimate for the log of Dirichlet heat kernel and Poisson heat kernel on domains, and a sharpened local Li-Yau gradient estimate. In the second part, without explicit curvature assumptions, we prove a global upper bound for the fundamental solution of an equation introduced by G. Perelman, i.e. the heat equation of the conformal Laplacian under back...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Potential Analysis

سال: 2021

ISSN: ['1572-929X', '0926-2601']

DOI: https://doi.org/10.1007/s11118-021-09969-2